Centre d'Etudes Doctorales : Sciences et Techniques et Sciences Médicales

AVIS DE SOUTENANCE THESE DE DOCTORAT

Présentée par

Mr: ILIASS EL MRABTI

Discipline : Génie Mécanique Spécialité : Génie Mécanique

Sujet de la thèse : Contribution à l'optimisation mono/multi-objective du procédé d'emboutissage par une approche hybride : éléments finis, plans d'expériences et réseau de neurones artificiels.

Formation Doctorale : Sciences de l'ingénieur, Sciences Physiques, Mathématiques et Informatique.

Thèse présentée et soutenue le mercredi 22 février 2023 à 10h au Centre de Conférences à la Faculté des Sciences et Techniques devant le jury composé de :

Nom Prénom	Titre	Etablissement	
Ahmed ABOUTAJEDDINE	PES	Faculté des Sciences et Techniques de Fès	Président
Mohammed NOUARI	PES	Ecole des Mines de Nancy France	Rapporteur
Jalil ABOUCHITA	PES	Faculté des Sciences et Techniques de Fès	Rapporteur
Abdelhak NAFI	PES	Ecole Nationale Supérieure d'Arts et Métiers de Meknès	Rapporteur
M'Hamed 'h BOUTAOUS	PES	INSA de Lyon France	Examinateur
Rabie EL OTMANI	PH	Ecole Nationale des Sciences Appliquées d'El Jadida	Examinateur
Abderrahim CHAMAT	PH	Faculté des Sciences et Techniques de Fès	Examinateur
Abdelhadi EL HAKIMI	PES	Faculté des Sciences et Techniques de Fès	Directeurs de
Abdelhamid TOUACHE	PH	Faculté des Sciences et Techniques de Fès	thèse

Anouar EL MAGRI	EuroMed Polytechnic School	Invité
-----------------	----------------------------	--------

Laboratoire d'	accueil:	La	boratoire	Géi	nie N	1 écan	iqu	ıe.
Etablissement	: Faculté	des	Sciences	et T	echn'	iques	de l	Fès

Centre d'Etudes Doctorales : Sciences et Techniques et Sciences Médicales

Résumé de la thèse

L'emboutissage est l'un des procédés de la mise en forme les plus courants. Il est largement utilisé pour la production en série de pièces de diverses formes dans les industries de l'automobile, de l'emballage et de l'électroménager. Au cours de ce processus, la pièce emboutie peut présenter aux plusieurs défauts, tels que le retour élastique, l'amincissement, le plissement et la rupture si les paramètres du procédé ne sont pas correctement sélectionnés. Malheureusement, le processus de conception de l'emboutissage dans les entreprises est encore basé sur la méthode classique d'essai erreur, ce qui est un processus très lent et coûteux. L'objectif de cette thèse est de proposer une approche d'optimisation complète et efficace, qui commence par la modélisation et se termine par l'identification des paramètres optimaux minimisant les défauts du procédé. Notre approche est basée sur la combinaison de la simulation par éléments finis, de plans d'expériences (DOE), de méta-modèles et d'algorithmes d'optimisation. Sur la base de la comparaison des résultats de la simulation avec les résultats expérimentaux, deux modèles numériques par la méthode des éléments finis (FEM) ont été développés et validés pour deux pièces de formes différentes. Ainsi, la simulation numérique proposée nous permis de prédire correctement les quatre défauts les plus fréquents en emboutissage. Dans cette étude, les paramètres d'emboutissage sont optimisés en fonction de leur degré d'importance. Pour cette raison, la méthode d'analyse de la variance (ANOVA) hybridée avec la méthode de Taguchi du signal/bruit ont été utilisée pour évaluer le degré d'importance de chaque paramètre. En effet, l'influence de cinq paramètres sur le retour élastique dans le premier benchmark et l'effet de neuf paramètres du procédé sur la rupture, le plissement, et l'amincissement dans le deuxième sont étudiés. Un modèle de réseau neuronal artificiel (ANN) a été développé, comme prédicteurs, pour relier les paramètres critiques d'emboutissage au retour élastique et quatre modèles de méta-modélisation, notamment RSM, RBF, krigeage et ANN, sont développés et comparés les uns aux autres pour choisir la meilleure prédiction de l'amincissement, le plissement et la rupture. L'optimisation de l'essaim de particules (PSO) est ensuite mise en œuvre pour identifier les valeurs optimales des paramètres de processus minimisant le retour élastique, de même, l'algorithme NSGA2 est appliqué pour converger vers le front de Pareto optimal minimisant la rupture et le plissement simultanément. Les résultats indiquent qu'une minimisation importante des défauts étudiées pourrait être obtenue avec l'utilisation de ces deux algorithmes. Cette approche peut donc être utilisée pour l'optimisation des défaillances de processus de systèmes mécaniques hautement non linéaires.

Mots clés : Emboutissage, Retour élastique, Rupture, Plissement, Amincissement, méthode d'éléments finis, plan d'expériences, Méta-modèle, Réseau de neurone artificiel, Optimisation mono/multi-objectifs.